

ÉCOLE NATIONALE DES SCIENCES GÉOGRAPHIQUES

Extraction de Structure

Bruno Vallet

bruno.vallet@ign.fr

LASTIG - ENSG - IGN

Master PPMD

Le problème de l'extraction de structure:

Ensemble de points

Extraction de structure

Primitives géométriques

Applications:

- Détection d'objets
- Reconstruction d'objets structurés
- Souvent étape intermédiaire dans une chaine de traitements de données

Ensemble de points:

Considérés comme des mesures, des évidences des objets cherchés.

Exemples:

- Points de contours image
 - évidence d'un bord visible
- Points d'un scan laser
 - évidence d'une interface vide/plein)
- Points résultant d'une corrélation
 - évidence d'une surface visible

Primitives:

Données continues décrites par

une équation mathématique:

En 2D:

- Droite
- Segment
- Cercle
- Ellipse
- Triangle
- Rectangle
- Carré
- Spline

En 3D:

- Plan
- Triangle
- Sphère
- Droite
- Spline
- Quadrique

Problème:

Retrouver des primitives dans les points de données.

Compromis:

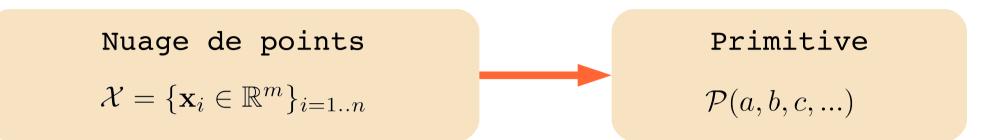
- Le moins de primitives possible
 - Mesuré par le nombre de primitives
- Expliquant un maximum de points
 - Expliquer= être suffisament proche de.
 - Sous entend une association point/primitive.
 - Mesuré par le nombre de points expliqués et leur distance aux primitives

Plan du cours:

- Introduction
- I Moindres carrés
- II Hough
- III RANSAC
- IV Comparaisons
- Conclusion

I – Estimation aux moindres carrés

Problème de l'estimation aux moindres carrés:



- Trouver une primitive dans un nuage de points
- On suppose que tous les points appartiennent à la primitive
- On cherche donc uniquement à combiner les mesures pour réduire le bruit/erreurs de mesures

Problème de l'estimation aux moindres carrés:



- La primitive dépends de plusieurs paramètre
- On minimise l'erreur:

Energie L,

$$\mathcal{E}_{L_2}(a, b, c, \dots) = \sum_{i=1\dots n} dist(\mathbf{x}_i, \mathcal{P}(a, b, c, \dots))^2$$

Problème de la régression linéaire:

Mesures

$$\mathcal{X} = \{(x_i, y_i)^t \in \mathbb{R}^2\}_{i=1..n}$$

Fonction affine

$$y = ax + b$$

- On cherche une relation linéaire entre des mesures
- Les x sont supposés parfaits, les y imparfaits
- On minimise

Energie L,

$$\mathcal{E}_{L_2}(a,b) = \sum_{i=1..n} (ax_i + b - y_i)^2$$

Résolution:

- ullet $\mathcal{E}_{L_2}(a,b)$ est convexe, donc elle a un unique minimum
- Ce minimum vérifie $\nabla \mathcal{E}_{L_2}(a,b)=0$

$$\frac{\partial \mathcal{E}_{L_2}(a,b)}{2\partial a} = \sum_{i=1..n} x_i (ax_i + b - y_i) = a \sum_{i=1..n} x_i^2 + b \sum_{i=1..n} x_i - \sum_{i=1..n} x_i y_i = 0$$

$$\frac{\partial \mathcal{E}_{L_2}(a,b)}{2\partial b} = \sum_{i=1..n} ax_i + b - y_i = a \sum_{i=1..n} x_i + nb - \sum_{i=1..n} y_i = 0$$

On résout aisément cette paire d'équations linéaires

$$\begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} \sum x_i^2 & \sum x_i \\ \sum x_i & n \end{pmatrix}^{-1} \begin{pmatrix} \sum x_i y_i \\ \sum y_i \end{pmatrix}$$

→ Extraction de primitives

→ Moindres carrés

Exemple du plan:
$$\mathcal{P}(\vec{n},r) = \{\mathbf{x}|\mathbf{n}.\mathbf{x} = r\} \quad ||\mathbf{n}|| = 1$$

$$dist(\mathbf{x}_i, \mathcal{P}(\mathbf{n},r)) = |\mathbf{n}.\mathbf{x}_i - r|$$

Energie L, pour un plan

$$\mathcal{E}_{L_2}(\mathbf{n},r) = \sum_{i=1}^n (\mathbf{n}.\mathbf{x}_i - r)^2$$

- Problème: la normale au plan être normalisée: $\mathbf{n}^t\mathbf{n}=1$
- Solution: Lagrangien

$$\mathcal{L}(\mathbf{n}, r, \lambda) = \sum_{i=1}^{n} (\mathbf{n}.\mathbf{x}_i - r)^2 + \lambda(\mathbf{n}^t \mathbf{n} - 1)$$

Exemple du plan: Résolution

Résolution:

$$\frac{\partial \mathcal{L}(\mathbf{n}, r, \lambda)}{\partial \lambda} = \mathbf{n}^{t} \mathbf{n} - 1 = 0$$

$$\frac{\partial \mathcal{L}(\mathbf{n}, r, \lambda)}{\partial r} = -2\mathbf{n}. \sum_{i=1}^{n} \mathbf{x}_{i} + 2nr = 0 \quad r = \mathbf{n}.\mathbf{g} \quad \mathbf{g} = \sum_{i=1}^{n} \mathbf{x}_{i} / n$$

$$\mathcal{L}(\mathbf{n}, r, \lambda) = \sum_{i=1}^{n} (\mathbf{n}.\mathbf{x}_{i} - \mathbf{n}.\mathbf{g})^{2} + \lambda(\mathbf{n}^{t} \mathbf{n} - 1)$$

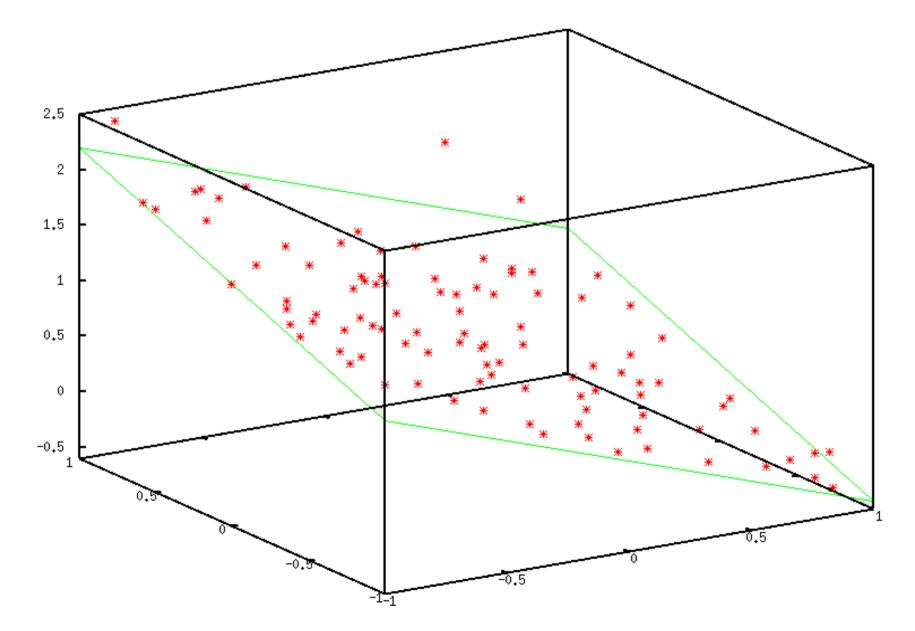
$$\mathcal{L}(\mathbf{n}, r, \lambda) = \mathbf{n}^{t} E_{L_{2}} \mathbf{n} + \lambda(\mathbf{n}^{t} \mathbf{n} - 1) \quad E_{L_{2}} = \sum_{i=1}^{n} (\mathbf{x}_{i} - \mathbf{g})^{t} (\mathbf{x}_{i} - \mathbf{g})$$

$$\nabla_{\mathbf{n}} \mathcal{L}(\mathbf{n}, \lambda) = (E_{L_{2}} + \lambda I) \mathbf{n} = 0$$

• C'est un problème de valeurs propres: le minimum est le vecteur propre associé à la plus petite valeur propre de E_{L_2}

→ Moindres carrés

Exemple du plan: Résultat



Problème: détection de primitives multiples:

Nuage de points

$$\mathcal{X} = \{\mathbf{x}_i = (x_i, y_i, z_i)^t \in \mathbb{R}^3\}_{i=1..n}$$

Primitives

$$\{\mathcal{P}(a_i, b_i, c_i, ...)\}_{i=1..n}$$

- Comment trouver plusieurs primitives ?
- Comment gérer les points hors primitive (outliers) ?
- Comment définir l'objectif en termes d'optimisation ?

Problème: détection de primitives multiples:

Nuage de points

$$\mathcal{X} = \{\mathbf{x}_i = (x_i, y_i, z_i)^t \in \mathbb{R}^3\}_{i=1..n}$$

Primitives

$$\{\mathcal{P}(a_i, b_i, c_i, ...)\}_{i=1..n}$$

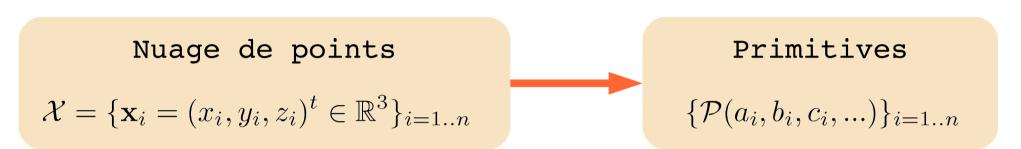
- On cherche:
 - N primitives
 - Une association des points aux primitives (ou non)

$$\mathcal{E} = \sum_{j=1..N} \sum_{i \in \mathcal{P}_j} dist(\mathbf{x}_i, \mathcal{P}_j(a, b, c, ...))^2 + \lambda N + \mu^2 N_{outlier}$$

- Induit un choix d'association trivial:
 - lacktriangle A la primitive la plus proche si $dist^2 < \mu^2$
 - Outlier sinon

III - Transformée de Hough

Problème: détection de primitives multiples:



Principe de la transformée de Hough:

- Extraire des objets paramétriques simples en se projetant dans l'espace des paramètres de l'objet
- Accumuler dans l'espace des paramètres
- Les primitives cherchées correspondent aux maxima

Problème: détection de primitives multiples:

Nuage de points

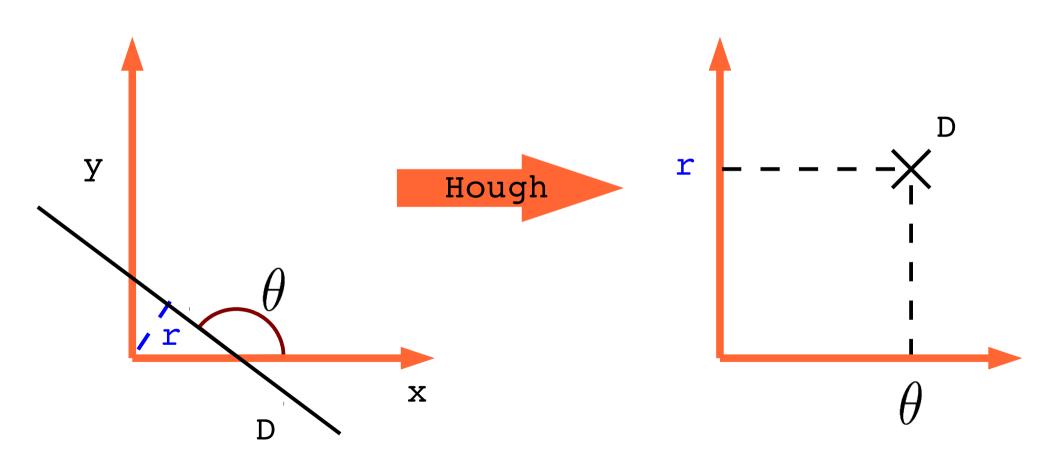
$$\mathcal{X} = \{ \mathbf{x}_i = (x_i, y_i, z_i)^t \in \mathbb{R}^3 \}_{i=1..n}$$

Primitives

$$\{\mathcal{P}(a_i, b_i, c_i, ...)\}_{i=1..n}$$

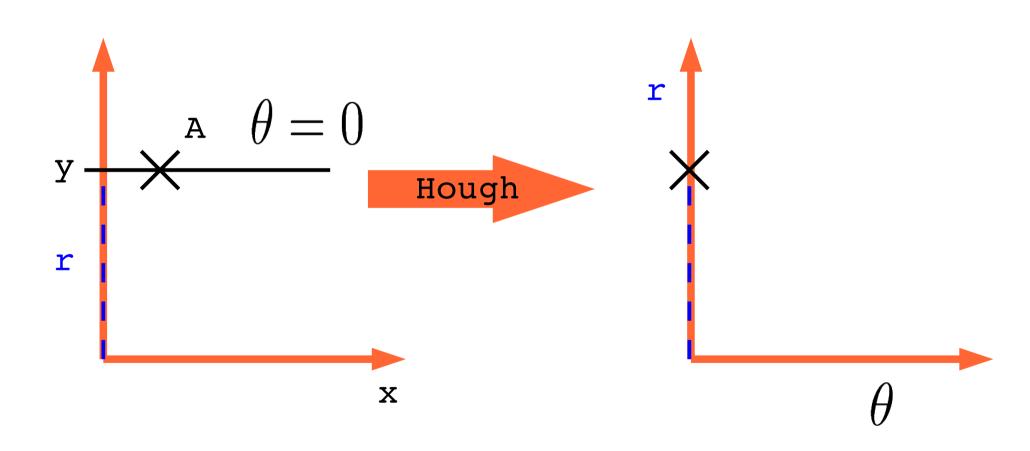
Principe de la transformée de Hough:

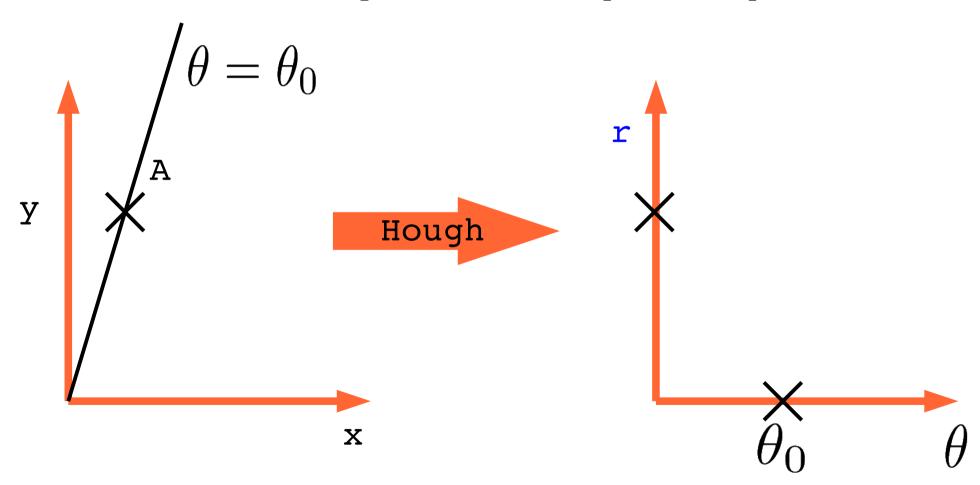
- Extraire des objets paramétriques simples en se projetant dans l'espace des paramètres de l'objet
- La primitive dépend de plusieurs paramètre :
 - Droite : 2 $(r, \theta) : x \cos(\theta) + y \sin(\theta) r = 0$
 - Cercle : 3 $(x_0, y_0, r) : (x x_0)^2 + (y y_0)^2 r^2 = 0$
 - Plan : 4 (r, θ, ϕ) : $x \sin(\theta) \cos(\phi) + y \sin(\theta) \sin(\phi) + z \cos(\phi) r = 0$
 - Sphère : 4 $(x_0, y_0, z_0, r) : (x x_0)^2 + (y y_0)^2 + (z z_0)^2 r^2 = 0$
 - Droite 3D: ???



→ Extraction de primitives→ Transformée de Hough

Exemple de la droite: $(r,\theta):x\cos(\theta)+y\sin(\theta)-r=0$

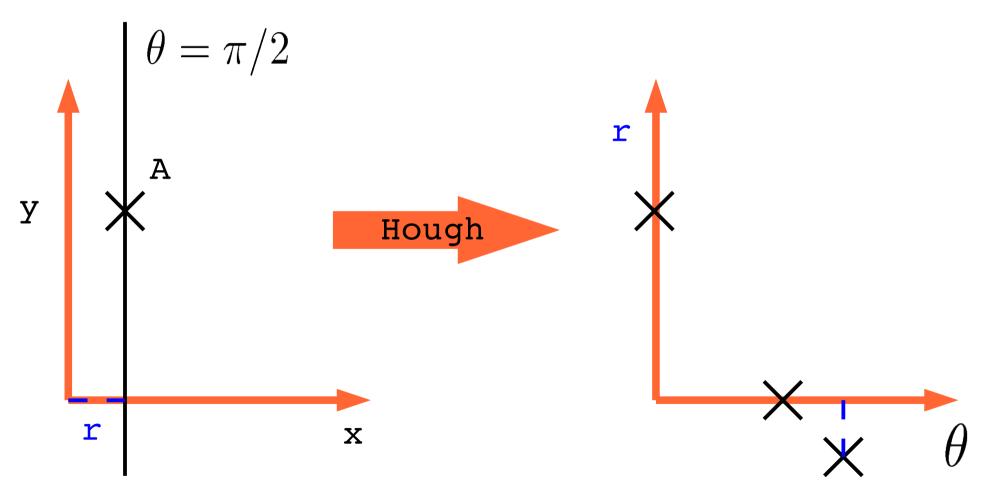


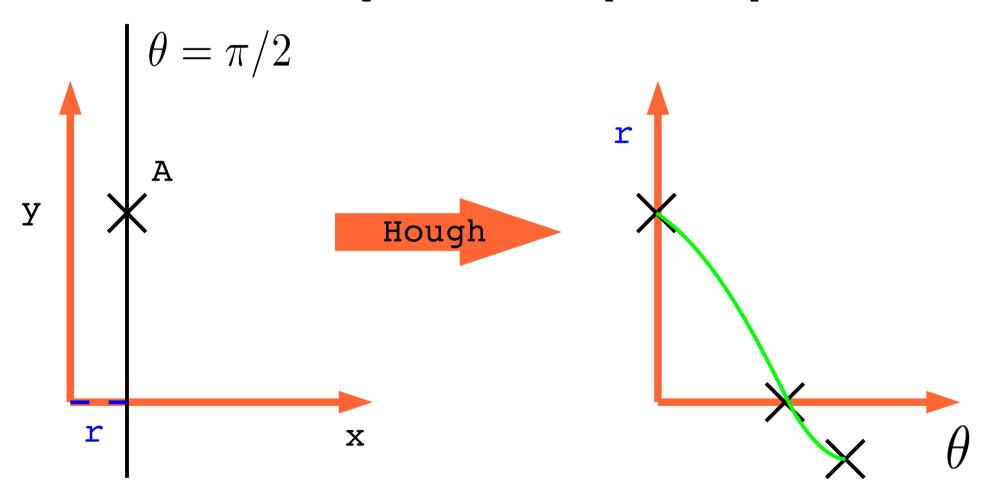


Transformée de Hough

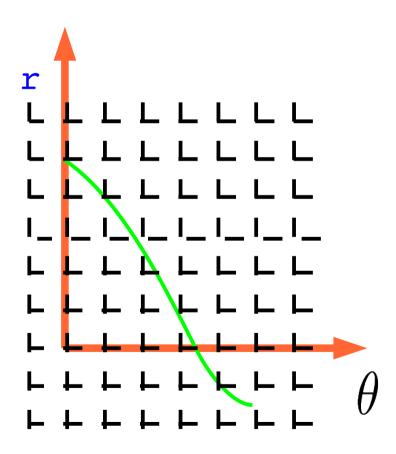
→ Extraction de primitives→ Transformée de Hough

Exemple de la droite: $(r,\theta):x\cos(\theta)+y\sin(\theta)-r=0$

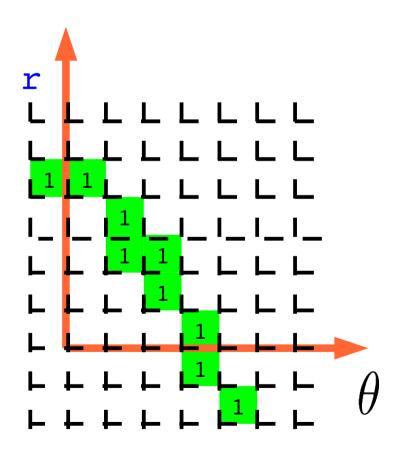




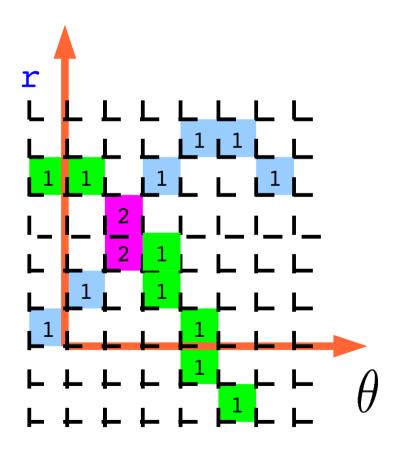
Discrétisation de l'espace des paramètres:



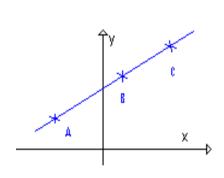
Discrétisation de l'espace des paramètres:

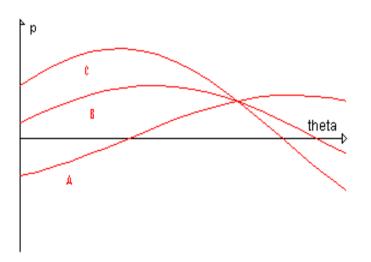


Accumulation dans l'espace des paramètres:



• Les maxima locaux correspondent à des paramètres de doites expliquant le maximum de points





- On les retire tant que leur valeur est supérieure à un seuil :
 - Nombre minimum de points expliqués par une primitive

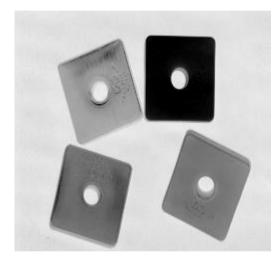
Transformée de Hough

- 2 paramètres critiques :
 - Pas de discrétisation:
 - Donne le pouvoir de séparation de l'algorithme
 - Compromis entre moins de primitives et moins d'erreur
 - Seuil sur l'arrêt:
 - Définit un nombre de points minimum pour justifier l'existence d'une primitive
 - Compromis entre moins de primitives et plus de points expliqués

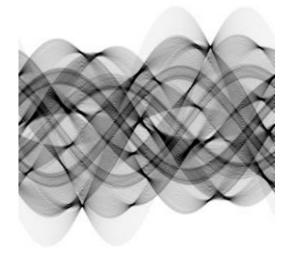
Transformée de Hough

→ Extraction de primitives→ Transformée de Hough

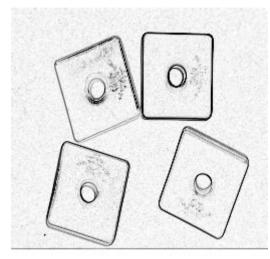
Exemple de la droite: $(r,\theta):x\cos(\theta)+y\sin(\theta)-r=0$



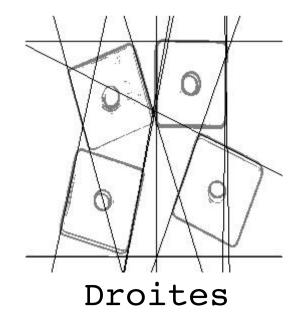
Image



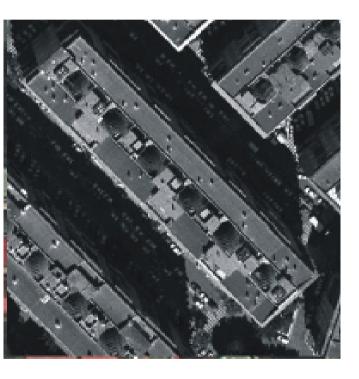
Accumulateur



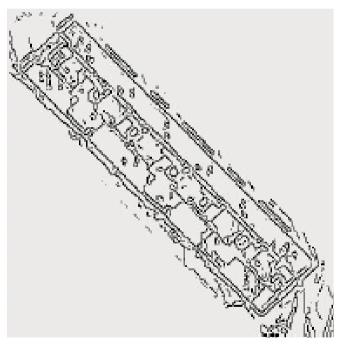
Contours



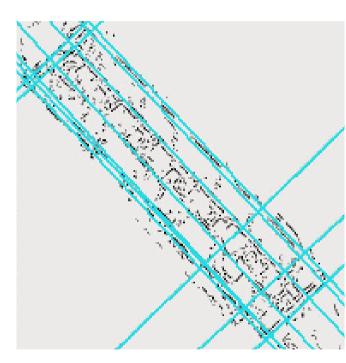
31



Image

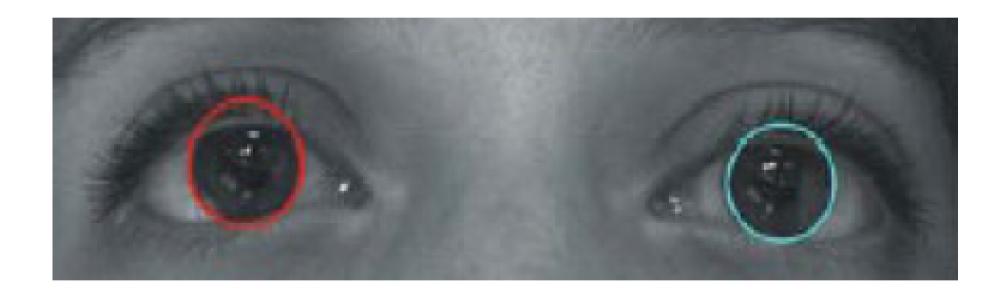


Contours

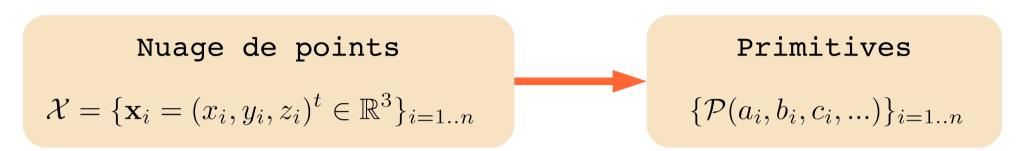


Droites

Exemple du cercle:



Problème: détection de primitives multiples:



Principe de RANSAC:

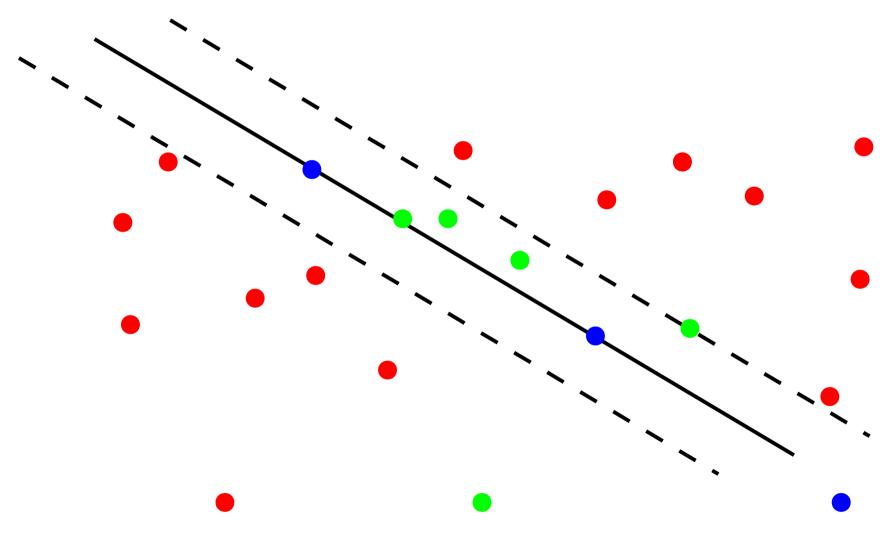
- Sélectionner des échantillons de points qui définissent une primitive unique
- Garder la primitive qui explique le plus de points
- Supprimer les points expliqués
- Itérer

Notion d'inliers/outliers:

- On choisit un seuil de distance
- On appelle inlier un point dont la distance à la primitive est inérieure au seuil. On considère que ce point appartient à la primitive.
- On appelle **outlier** un point dont la distance à la primitive est supérieure au seuil. On considère que ce point **n'appartient pas** à la primitive. Il peut appartenir à une autre primitive ou venir d'une erreur de mesure

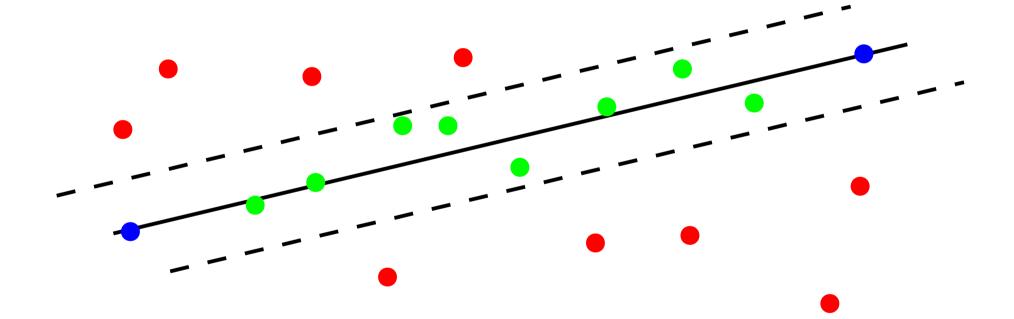
 \hookrightarrow Extraction de primitives \hookrightarrow RANSAC

Exemple de la droite: $(r,\theta):x\cos(\theta)+y\sin(\theta)-r=0$

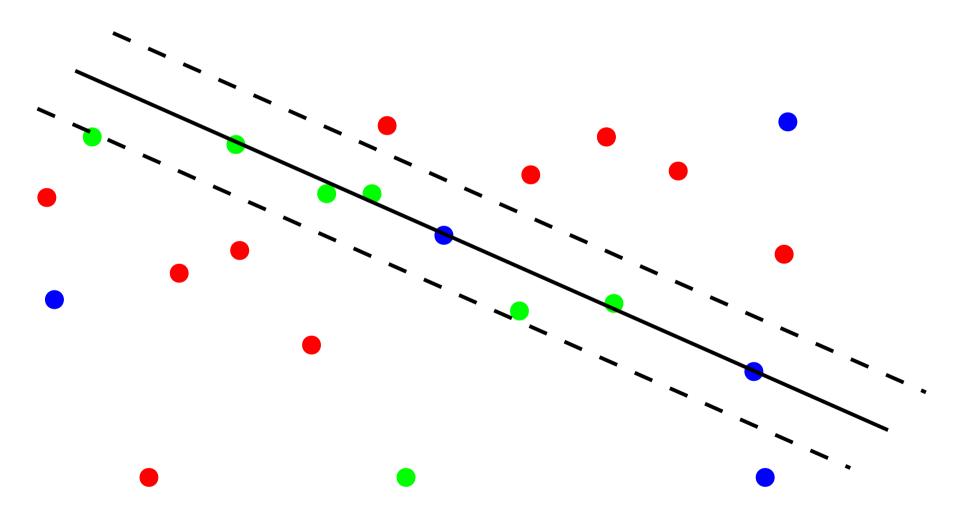


 \hookrightarrow Extraction de primitives \hookrightarrow RANSAC

Exemple de la droite: $(r,\theta):x\cos(\theta)+y\sin(\theta)-r=0$

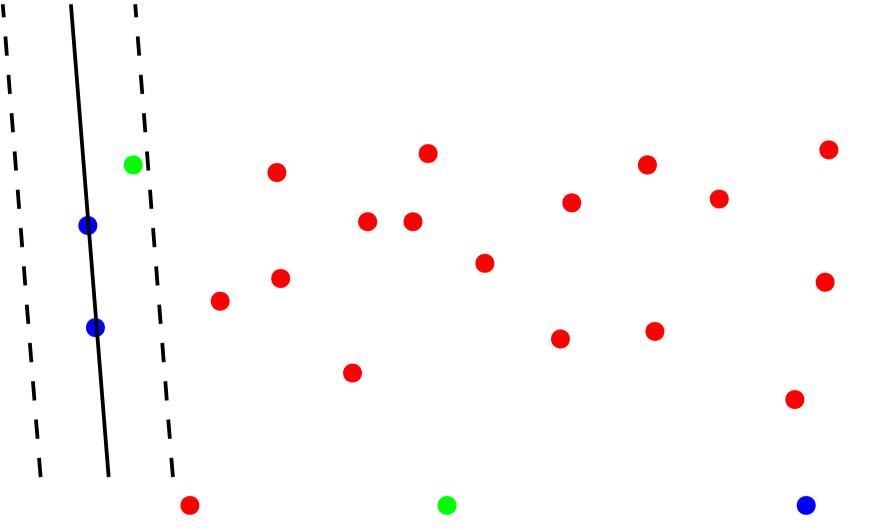


Exemple de la droite: $(r,\theta):x\cos(\theta)+y\sin(\theta)-r=0$



 \hookrightarrow Extraction de primitives \hookrightarrow RANSAC

Exemple de la droite: $(r,\theta):x\cos(\theta)+y\sin(\theta)-r=0$

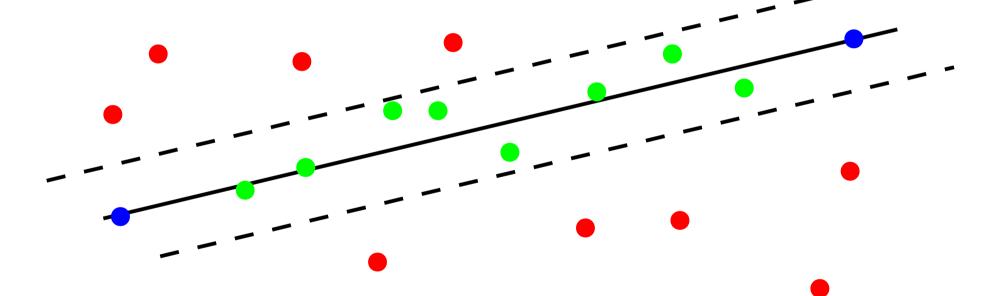


Outlier 16 Inlier

Echantillon

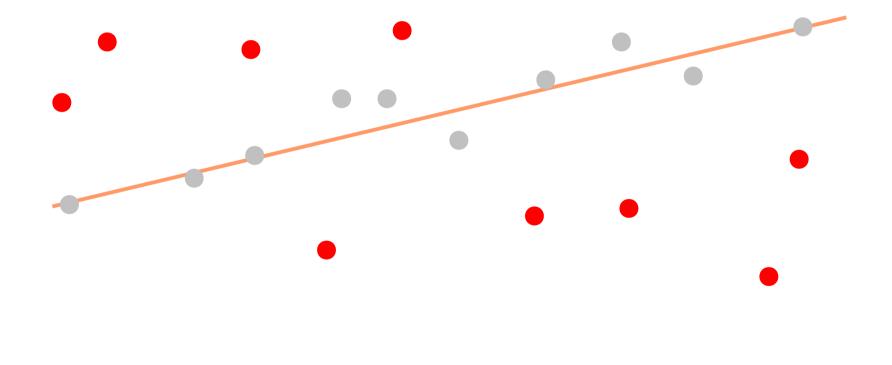
Maximum d'inliers trouvés:

- On ajoute cette primitive
- On retire ses inliers

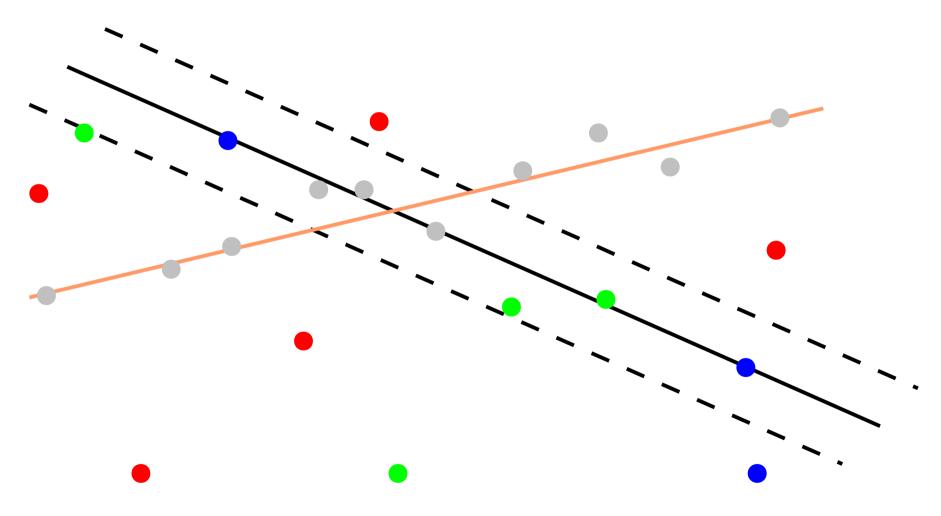


Maximum d'inliers trouvés:

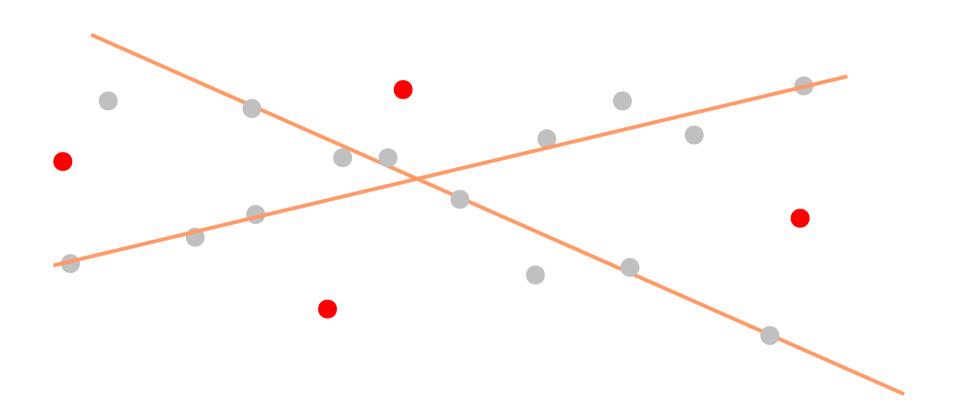
- On ajoute cette primitive
- On retire ses inliers



Deuxième itération:



Arret quand il n'y a plus assez de points sur la meilleure primitive:



On a trouvé les 2 droites qui expliquent le mieux le nuage de points

Comment choisir le nombre d'itérations ?

- Le nombre minimum de points par primitive est déjà un paramètre, on peut s'en servir:
 - On calcule la probabilité de tirer un point sur une primitive « minimum »: $p_{min} = n_{min}/n_{rest}$
 - On peut donc calculer la probabilité de tirer tous les points définissant la primitive minimum sur celle-ci: $p_{all}=p_{min}^n$
 - La probabilité de ne pas trouver la primitive au bout de m tirages est alors: $p_{not} = (1-p_{all})^m$
 - On peut donc se fixer cette probabilité en choisissant.

$$m = \frac{\log(p_{not})}{\log(1 - p_{all})}$$

- 3 paramètres critiques :
 - Distance de séparation inliers/outliers
 - Donne le pouvoir de séparation de l'algorithme
 - Compromis entre moins de primitives et moins d'erreur
 - Seuil sur l'arrêt:
 - Définit un nombre de points minimum pour justifier l'existence d'une primitive
 - Compromis entre moins de primitives et plus de points expliqués
 - Probabilité de rater une primitive minimale: compromis entre temps de calcul et guaranties sur l'optimalité du résultat

IV Comparaison

Rappel: critères pour l'extraction de structure

- Minimum de primitives
- Maximum de points expliqués
- Distance minimum des points expliqués aux primitives

Moindres carrés

- Ne traite qu'une primitive
- N'apparie pas les points aux primitives
- Minimise bien la distance des points expliqués aux primitives
 - => appliquer à la fin, quand on a défini un certain nombre de primitives et leurs points appariés

Hough: 3 critères

- Le nombre de primitives est ajusté en fonction du critère d'arrêt
- Les points peuvent être appariés à la primitives la plus proche, à condition qu'il vote pour elle dans l'espace de Hough
- Pas de minimisation explicite de la distance des points aux primitives:
 - On garantit seulement que la primitive a des paramètres proche des paramètres d'une primitive qui passe par chaque point associé
 - On a un seuil ferme sur l'appariement donné par la discrétisation de l'espace de Hough
 - On peut réestimer aux moindres carrés les primitives trouvées en se basant sur les appariements

Hough: inconvénients

- Problèmes de temps de calcul si trop de points
- Problèmes de mémoire si trop de cases:
 - dimention de l'espace de Hough
 - taille des cases
- Pas toujours facile de paramétrer une primitive de façon à ce que la distance dans l'espace de Hough soit significative
- Amélioration: supprimer les maxima dès qu'ils apparaissent et arrêter quand ils n'apparaissent plus assez vite

Ransac: 3 critères

- Le nombre de primitives est ajusté en fonction du critère d'arrêt
- Définit explicitement l'appariement point/primitive (inliers/outliers), donc le nombre de points expliqués
- Pas de minimisation explicite de la distance des points aux primitives, mais garantie d'une distance maximale
 - On peut là aussi réestimer aux moindres carrés les primitives trouvées en se basant sur les appariements

Ransac: inconvénients

- Pas de garantie de trouver la primitive
 - Mais la proba peut être rendue arbitrairement basse au détriment du temps de calcul
 - Pas toujours facile de définir une primitive à partir de n points
 - Seuil sur la distance peut poser problème:
 - Remplacer le score d'une primitive par une somme de gaussiennes en la distance des points (adoucit le seuil)
 - Pour les primitives bornées (segment, triangle,...) les grandes sont toujours favorisées
 - Retirer sa mesure au score d'une primitive

Conclusion

- L'extraction de structure est un problème bien posé (cf les 3 objectifs) mais difficile:
 - Inconnues continues (paramètres des primitives)
 - Inconnues discrètes (nombre de primitives, appariements points/primitives)
- Pas de solution pour le problème général, donc une combinaison:
 - D'une méthode optimale (moindres carrés) pour trouver les inconnues continues une fois les inconnues discrètes déterminées
 - De méthodes heuristiques (Hough, Ransac) pour déterminer les inconnues discrètes
- Donc pas de garantie d'optimalité globale