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Abstract

We propose a new approach for outdoor large scale image based

localization that can deal with challenging scenarios like cross-

season, cross-weather, day/night and long-term localization. The

key component of our method is a new learned global image de-

scriptor, that can effectively benefit from scene geometry informa-

tion during training. At test time, our system is capable of inferring

the depthmap related to the query image and use it to increase lo-

calization accuracy.

Problem statement

Wewant to find the position of an image query according to a known

reference.

?

Content-Based

Image retrieval

1. Collect geolocalized images on the area of interest.

2. Cast the image localization problem as an image-retrieval

problem.

3. Transfer the pose of the closest retrieved candidate to the query.

Challenge in visual based localization

Drastic visual changes occur due to season/day-night cycles.

Radiometric

information

Geometric

information

However, geometric information still remains the same. Unfortu-

nately, geometric information is not always available.

How to use partial geometric information to improve image de-

scriptor for localization?
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Triplet loss penalizes difference be-

tween anchor & positive example

and similarity between anchor &

negative example:
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where {qim, q+
im, q−

im} is an image

triplet, f (xim) the global descrip-

tor of image xim and λ an hyper-

parameter controlling the margin

between positive and negative ex-

amples.

Depth frommonocular

We use an encoder/decoder

architecture to generate depth

map frommonocular images.

Training is done in a supervised

manner by minimising L1 loss
function:

L = ‖G(I) − DI)‖1 ,

where G(I) is the generated

depth map from image I and

DI theground truthdepthmap

associated to image I .

Learning through missing modality
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1. We use triplet loss to produce a strong image descriptor.

2. Latent image representation is given to a CNN decoder to

reproduce the scene geometry.

3. We use a second CNN to produce a strong depthmap descriptor.

4. Final descriptor is obtained by concatenating image and depth

map descriptors.

Our proposal is trained with two different types of data:

Image triplet

Pair of image and associated depth map
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The depth information is only needed during the training step!

Dataset & Implementation

Training parameters:

pytorch framework
adam optimizer with lr=0.0001 and wd=0.001

batches of 10 or 25 triplets, trained up to 50 epochs

Encoder Descriptor

Alexnet (A) Resnet18 (Rt) MAC [4] NetVLAD [1]

Table 1. Four possible combination of encoder/descriptor

Competitors:

Only RGB (dotted line)

Hallucination network [2] (plain line with cross)

We train and test our proposal on RobotCar dataset with 4 different

localization scenarios [3].
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Long-term
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(156 im.)

Closest image in

reference

dataset(1688 im.)
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Metric: we compute the distance

between the top ranked returned

database image position and the

query ground truth position and

report the percentage of queries

well located under a threshold D.

Improving night to day localization

Ournetwork is not able to generate proper depthmaps fromnight im-

ages.
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Thanks to the design of our method, we can improve generation per-

formances of the decoder without impacting the descriptors net-

works.
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Perspectives

Test our proposal on other modalities.

Implement our method for other visual localisation tasks (e.g.

direct pose regression).
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