OUTLINE

I. Radar imaging - Spatial resolution **II. Polarization - Polarimetry III.Radar response sensitivity IV. Relief effects** V. Speckle and Filtering

Electromagnetic coherent wave

Coherent wave: *temporal* behaviour

Electromagnetic coherent wave

Coherent wave: *spatial* behaviour

Electromagnetic coherent wave

Coherent wave: *spatial* and *temporal* behaviour

$$\psi$$
ñx, t ň = A cos(2πf₀t - $\frac{4π}{\lambda}x + φ$)

Important characteristics of coherent EMW:

Electromagnetic field evolution is predictable $\vec{E}_{(z,t)}$ $\vec{E}_{(z_0,t)}$ Source: IETR

Most general: *Elliptical* polarization

Most general: *Elliptical polarization*

Common radar sensor: *Linear polarization*

Radar :

transmits a EMW in a give polarization *measures* the backscattered wave contribution in a given polarization

- $ec{n}$: Normal to the observed surface

Polarization characterisation of a radar acquisition:

Microwave oven

ALOS acquisition (λ = 24 cm)- Polarization *HV*

Monitoring of the Petit Saut Dam French Guiana Flooding heginning, 1994

ASAR acquisition Gaboon

VV

Tubuai Island, vegetation discrimination, L Band

Radar polarimetry for Forest types cartography

Tubuai Island, French "Polynesia

in visible domain also!

in visible domain also!

Vertical

Horizontal

Rees, 2012

Intensity (or Amplitude) Images

Surface scattering (bare soils) smooth rough low high VV > HH $HV \sim 0$ Volume scattering (Dense forest) HH, VV high HV high Double reflexion (urban areas, flooded vegetation) HH > VVWild areas (urban areas, disorderly rocks) $VV \sim HH \sim HV$

Intensity (or Amplitude) Images

VV polarization

For bare surfaces (roughness / moisture) vegetation with vertical structures (*i.e.* rice crops) **HV polarization**

For Forest/Non forest discrimnation HH polarization

For flooded/Non flooded vegetation Urban areas

Intensity Image

AISAR data, L Band

- Double bounds
- Dense vegetation
- Bare soil
- Pinus et Falcata

Purau

POLARISATIONS DIVERSITY ≠ POLARIMETRY

INTENSITY Images (different polarization):

Fully Polarimetric Data: INTENSITY + PHASE

HH, HV, VV

HH, HV, VV (PALSAR, RADARSAT-2)

(ASAR)

Partial Polarimetric Data: INTENSITY + PHASE HH, HV VV, HV HH, VV (PALSAR, RADARSAT-2)

Radar images interpretation rules Polarimetric Data: Amplitude + Phase Images

Behavior of the differential phases

Odd number of reflexions: *Ex: Trihedral target type* $\phi_{HH}-\phi_{VV} \approx 0^{\circ}$

Even number of reflexions: *Ex: dihedral target type* $\phi_{HH}-\phi_{VV} \approx 180^{\circ}$

Radar images interpretation rules Polarimetric Data: Amplitude + Phase

 $VV = A_{VV} \cos(\phi_{VV}) \qquad HH = A_{HH} \cos(\phi_{HH})$

Surface Scattering: $\phi_{VV} = \phi_{HH}$

Radar images interpretation rules Polarimetric Data: Amplitude + Phase Images

 $VV = A_{VV} \cos(\phi_{VV}) \qquad HH = A_{HH} \cos(\phi_{HH})$

Double bounds: $\phi_{VV} - \phi_{HH} = \pi$

Radar images interpretation rules *Polarimetric Data: Amplitude + Phase Images* Surface scattering (bare soils) Amplitude Phase difference VV > HH $\phi_{VV} - \phi_{HH} = 0$ |HH+VV| high $HV \sim 0$ Volume scattering (Dense forest) HH, VV high HV high Double reflexion (urban areas, flooded vegetation) $\phi_{_{VV}} - \phi_{_{HH}} = \pi$ HH > VV|HH-VV| high

Wild areas (dense habitat, screes,...) VV ~ HH ~ HV

Polarimetric Data: Amplitude + Phase Images

|HH+VV|

Bare surfaces

HV polarization

For Forest/Non forest discrimnation

|HH-VV|

For urban areas and flooded vegetation

Radar images interpretation rules Polarimetric Image: Pauli Representation

|HH-VV| |HV| |HH+VV|

Tubuai Island

AISAR data, L Band

- **Double bounds**
- Dense vegetation
- Bare soil
- Pinus et Falcata

Purau

Pauli Representation

Quickbird

HH HV VV

Natural Vegetation - French Guyana PALSAR (L Band)

> hh/hv **hh** hv hv-hh

