OUTLINE

I. Radar imaging - Spatial resolution **II. Polarization - Polarimetry III.Radar response sensitivity IV. Relief effects** V. Speckle and Filtering

The radar equation

The radar equation

Power received by dS at distance R'

$$P_r = \frac{P_e G_e}{4\pi R^2} \frac{RCS}{4\pi R'^2} dS \qquad (W)$$

Recived irradiance at distance R'

$$E_r = \frac{P_e G_e}{4\pi R^2} \frac{RCS}{4\pi R'^2} \qquad (W/m^2)$$

Power received by the antenna:

The radar equation

 \frown Radar Cross Section (m²)

Power received by the antenna:

$$dP_r = \frac{P_e G_e}{4\pi R^2} \frac{RCS}{4\pi} \frac{G_r \lambda^2}{4\pi R^2} \qquad (W)$$

Case of expanse surfaces:

Radar Backscattering Coefficient:

$$\sigma^{0} = \frac{RCS}{d\Sigma} \qquad (m^{2}/m^{2})$$

[] Analogous to the reflectance in Optical domain

$$dP_r = \frac{P_e G_e}{4\pi R^2} \frac{\sigma^0 d\Sigma}{4\pi} \frac{G_r \lambda^2}{4\pi R^2}$$

$$\sigma^{0} = \frac{(4\pi)^{3}}{\lambda^{2}} \frac{\langle P_{r} \rangle}{P_{e}} \frac{R^{4}}{\int_{S} \int_{s} \int_{e} G_{e} G_{r} d\Sigma}$$

 σ^0 high dynamic => dB units (log. scale)

$$\sigma_{dB}^{0} = 10.\log_{10}(\sigma_{Nat}^{0})$$

Radar images interpretation rules 2 cases of figure:

Surface scattering (interaction occurs at the interface between beth media)

Volume scattering (interaction with multiple elements = scatterers)

Scattering Mecanisms over vegetation

- 1: vegetation only
- 2: soil-vegetation interaction
- 3: soil attenuated by vegetation

Vegetation contribution

==> Volume scattering

Sparse vegetation

Soil attenuated by vegetation

==> Surface scattering

bare soils or water surfaces

Surface Scattering

Surface scattering

- Soil: homogeneous medium ==> scattering at the interface
- Influence of roughness

Surface roughness is refered to the radar wavelength

$$\sigma < \frac{\lambda}{8\cos\theta} = \Rightarrow \text{ smooth surface}$$

ERS (λ = 5 cm, θ = 23°): s > 2.10⁻²: every soil is rough!

 σ : rms height

Surface scattering

Soil roughness: angular effect

Soil moisture: shift level effect

ERS (bande C, 23°, VV): 9 mars 1999

ERS (bande C, 23°, VV): 9 mars 1999

Over surface water: surface roughness too

Typhon Isidore Mexico - 21.09.2002

MERIS (600 m)

ASAR

Frequency - wavelength

Exercice: why is it required to know the wavelength λ ?

JERS sensor (Bande L, λ = 25 cm) ERS sensor (Bande C, λ = 6 cm)

ERS radar image in Sahel

Over bare soil: depends on Roughness Soil moisture

Flooded areas monitoring

Desert Algeria

Effect of penetration

SIR A band L

The Chott El Jerid, Tunisia

A vast evaporitic (80 x 120 km) area

60 km

Discharge playa from a major aquifere (upward percolation)

+

occasional runoff from neighbouring playa (Fedjadj).

Temporary flooding

Playas: Evaporites (saline deposits)

Flooded / dry surface

Wettest months

sudden smoothing due to dissolution of saline crust+ dramatic change of diel. const. (saline solution)

Summer months:

evaporation [] halite crystal growth [] increase of roughness

Lab and ground measurements, Death Valley (roughness, dielectric constant)

ASCAT temporal signature over the Chott el Jerid

High temporal dynamic (> 10 dB) Linked to environment seasonal variations

ASCAT temporal signature over the Chott el Jerid

Incidence angle: 40°

ASCAT/ASAR temporal signature over the Chott el Jerid

Incidence angle: 40°

16 May 29 August 19 October

Chot El Jerid, Tunisie

ASSA AND AND AND AND A

Polarimetric data classification Chott El Djerid

Classification H/A/alpha

Decomposition de Pauli

Radarsat-2 - 17 avril 2009

Over vegetation

Volume scattering

Volume scattering

Inhomogeneous medium (vegetation cover)

each inhomogeneity (leaves, branches....) scatters incident wave in all direction

Multiple scattering + Absorption ==> wave attenuation within the layer

Frequency - wavelength

Tubuai Island, Vegetation discrimination

Penetration depth is proportional to λ

Volume Scattering

Radar saturation level with vegetation density

100 tons/ha

from Imhoff et al. 19?

20 tons/ha

40 tons/ha

Backscattering mechanism on vegetation

Land surfaces monitoring with radar data

Radar observations sensibility

- left Biomass
- ^[] Structure and moisture of vegetation
- Roughness and moisture of soils

Access to key variables of ecosystem functionning

- Vegetation discrimination (type, espèces, état,....)
- Biomass (Net Primary Productivity)
- □ Vegetation phenology (periods of activity)
- ^[] Hydrological states of plant covers (stress,)
- □ Soil moisture

Local Agricultural Deforestation along road

Cameroun (Ngaoundéré région : Cultural practice, burned area

Color Composite **ERS** and **JERS**

Radar response sensi

Temporal evolution monitoring *All weather: no seasonnal constraint*

Sédimentation

Seasonal variations monitoring (Sahel)

ASAR (λ = 6 cm)

PALSAR (λ = 24 cm)

C Band (ASAR): Sensitive to sandy and silty soils

Bande L (PALSAR): Better discrimination of geological structures

Remnant of alluvial system and lacustrine depressions

hange detection in a radar time series of 12 PALSAR images Jan. 2007 – apr. 2009

PALSAR Fine Beam HH polarization Jan. 2007 – Apr. 2009

mporal changes detected (12 PALSAR acquisitions)

ponds

Millet fields (depend on orientation!)

PALSAR HH polarisation Jan. 2007 – Mar. 2009

Changes detection: C band / L band comparaison

PALSAR (λ = 24 cm)

ASAR (λ = 6 cm)

Changes detection: C band / L band comparaison

PALSAR (λ = 24 cm)

 $\overline{\text{ASAR}}$ ($\lambda = 6 \text{ cm}$)

Strong penetration on sandy soils ponds Millet fields Weak penetration on sandy soils surface states changes sandy soils, ponds