OUTLINE

I. Radar imaging - Spatial resolution **II. Polarization - Polarimetry III.Radar response sensitivity IV. Relief effects** V. Speckle and Filtering

Université Gustave Eiffel

TROPICAL RAIN FORESTS MONITORING

Tropical Forests monitoring

Role of biomass in the Carbon Global Cycle?

REDD+:

Financial incentive for sustainable forests ==> tropical countries

0-10 Mg ha-1	50-60 Mg
10-20 Mg ha ⁻¹	60-100 Mg
20-30 Mg	ha ^{-⊥} > 100 Mg
30-40 Mg ha ⁻¹	ha-1
	water
40-50 Mg	no data
ha ⁻¹	

Produit 'Biomasse forestière' Afrique

Séminaire Theia Geosud - 1-2 juin 2015 - IAM Montpellier

Produit 'Biomasse forestière' Cameroun

	Surface area (ha)	Mean AGB (Mg.ha ⁻¹)	AGB (Tg)	Carbon (TgC)
Mosaic forest-croplands	1,811,150	89.5	162.9	81.4
Mosaic forest-savanna	5,187,900	75.6	394.2	197.1
Deciduous woodland	10,352,400	53.3	553.6	276.8
Deciduous shrubland – sparse trees	1,949,000	30.7	59.8	29.9
Others	6,622,340	12.6	83.4	41.7
TOTAL	25,922,790	48.2	1253	626.9

Total aboveground carbon stock:

- This study: 626.9 TgC
- Nasi et al. (2009): 710 TgC

Séminaire Theia Geosud - 1-2 juin 2015 - IAM Montpellier

Produit 'Biomasse forestière' Cameroun

Séminaire Theia Geosud - 1-2 juin 2015 - IAM Montpellier

Tropical Forests monitoring

7th ESA Earth Explorer mission: BIOMASS (2022)

Large wavelength for biomass cartography

- 1. Canopy penetration for every biomes
- 2. Interacts with woody elements of vegetation
- 3. Forest height estimation ability
- \Box P band band P (λ = 70 cm) largest available wavelength from space

P Band Radar (λ = 70 cm)

Tropical froest monitoring

7th ESA Earth Explorer mission: BIOMASS (2022)

A key mission for a better understanding of Global Carbon Cycle

Aerial biomass (t / ha)

Forest Height

Deforested areas (ha)

- Resolution: 50m
 - 1 map / 6 months (4-year period)
 - Global cover of forested areas
 - Classification precision: 90%

- 1 map / 6 mois (4-year period)
- Global cover of forested areas
- Precision 20%, or 10 t ha⁻¹
 for biomass < 50 t ha⁻¹

Canopy height (m)

- Resolution: 200 m
- 1 map / 6 months (4-year period)
- Global cover of forested areas
- Precision 20 30%

Biomass Mission

Radar response sensitivity

RADAR COHERENCE:

2 radar acquisitions

Temporal geometrical stability ($\leq \lambda$) of the scatterers within each resolution cell

Amplitude Mount Cameroun, ERS Coherence

Radar response sensitivity

Coherence ERS

Amplitude ERS

Coherence

ASCAT/ASAR temporal signature over the Chott el Jerid

Incidence angle: 40°

Radar remote sensing for land surfaces monitoring

Side looking radar sensors

Scatterometers

 \square Radar eflectivity estimation (σ)

- *low spatial resolution*: ~ 10 50 km
- •high frequency of acquisitions (~

^d Surface imaging

• high spatial resolution: ~ 10 m

SAR

low frequency of acquisition (~ month)

Sentinel-1 Les landes – March 2015 Radar remote sensing for land surfaces monitoring

The Sentinel-1 misions

Sentinel-1A: launched the 3rd April 2014 == > SAR data from March 2015

Revisit time: 12 days

- 6 days!!

Sentinel-1B: launched the 22th April 2016 Revisit time: 12 days == > SAR data from September2016

- C band
- Spatial resolution: 20 m
- Swath width: 250 km
- Two polarizations over land surfaces: VV and VH

SAR SENTINEL-1

Acquisitions period: **12** days (S1-A) – 6 days (S1-A+B)

Planned mode over land surfaces: Interferometric Wide (IW)

2 Polarisations: VV -VH Swath: 250 km (3 sub-swaths) GRD Products : Spatial resolution: 20 m Pixel: 10 m SLC Products Spatial resolution: 3 x 20 m; Pixel: 2 x 14 m (rge x az.)

Temporal monitoring of seasonal variations of land surfaces Radar Backscattering Coefficient σ^{o} Interferometric Coherence $|\rho|$

SENTINEL-1 INTERFEROMETRIC WIDE, MODE

3 subswaths

GRD products

© ESA S1 User guide

Sentinel: Apport des séries temporelles

Formations végétales Parc de la Pendjari, Bénin

Données Sentinel (Big Data)

Fouille de donnees Intelligence artificielle Deep learning

Complémentarité optique / radar

Acquisitions over the Paris region

Collab. ESE / Paris Sud

18th March 2015 IW Acquisition

 $|\rho_{\scriptscriptstyle VV}|\text{-}|\rho_{\scriptscriptstyle VH}|-|\rho_{\scriptscriptstyle VV}|\,/\,|\rho_{\scriptscriptstyle VH}|$

$\sigma^{_0}$ Color composite image

5 May - 2 Sept. - 19 Dec. 2015

Polarisation VV

Polarisation $V\!H$

[§]*High spatio-temporal variability over crop fields*

Oaks stand

- No seasonal cyle *s*⁰_{VV}
- Seasonal cycles⁰_{VH} ==> $\sigma^{0}_{VV} / \sigma^{0}_{VH}$

(yearly amplitude 3 dB)

- signal low and constant (Mar. Nov.)
- $|\rho_{_{VV}}|$ et $|\rho_{_{VH}}|$ Identical
- higher values for low temperatures

Oaks stand

Radar Backscat. Coeff. s^o

ERS (VV) temporal signature

Proisy et al., 1999

- d no seasonal cycle in VV pol.
- $\square \text{ Seasonal cycle } \sigma_{VH}^{0} ==> \sigma_{VV}^{0} I \sigma_{VH}^{0}$

Oaks stand

Radar Backscat. Coeff. σ^{o}

 $\sigma_{_{VV}}^{o}$ / $\sigma_{_{VH}}^{o}$ and NDVI in phase

^{*§*}C band sensitive to foliar activity

Crops monitoring – Lamasquère region

in situ survey (CESBIO)

Winter crops: wheat, barley, rapeseed

Summer crops: soybean, sorghum, maïze, sunflower

Agricultural area (Lamasquère region)

Multi-temporal color-composite images

Radar Backscatterin Coeff.

Cohérence

10 June- 14 Sept. – 7 Dec.

4-16 Jul .- 9-16 Aug. – 7-19 Dec.

CROP FIELDS: Temporal profile σ^{o}

CROP FIELDS: Temporal profiles coherence

